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Relationship between current response and time in ion
transport problem including diffusion and convection.
2. Numerical approach
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The mathematical model related to controlled potential experiments in electroche-
mistry is studied. Ion transport is regarded as the superposition of diffusion and migra-
tion under the influence of an electric field. Modeling of the experiment leads to the
nonlocal identification problem for nonlinear parabolic equation. It is shown that in
some cases the nonlocal identification problem can be transformed to an initial value
problem for nonlinear parabolic equation. The finite diference approximation of this
problem, with the appropriate iteration algorithm, is derived. Based on these algorithms
the solution of the identification problem is presented. The obtained results permits one
to derive the behaviour of the current response Z.(¢), depending on time, also the rela-
tionship between the current response Z.(t) and Gottrellian Zg is obtained in explicit
form. An influence of the valences oxidised and reduced species is also analyzed.
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1. Introduction

Mathematical modeling of kinetics and mass-transfer in electrochemical
events, even in their simplest statement, generally consists of dealing with various
physico-chemical parameters, as well as complicated mathematical problems.
In this study we analyse the matematical and numerical models of mass and
charge transport in a controlled potential experiment in electrochemistry, called
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chronoamperometry [1-14]. In the case of two-species (oxidized and reduced spe-
cies) migrating under the influence of the electric field, the mathematical model
and governing equations are derived in [1]. This model assumes that the charge
flux arises from diffusion and migration of ions under the influence of the elec-
tric field. The scaled model with respect to the concentration u(x, t) of the redu-
ced species leads to the following identification problem for the nonlinear para-
bolic equation with the unknown coefficient ¢ (¢) [1]:

ur = (gux)x +q'(Oh(W)y, (x,t) € Ry x Ry, Ry :=(0,+400),
u(x,0) =0, xe€ R4, (1)
u,t) =1, € Ry,

q(t) = fooou(x, t)dx, t>0.

To the best of our knowledge, this problem, interesting also from the point
of view nonlocal inverse optimal control problems, is not still solved neither
mathematically, nor numerically. The only similarity solution of this problem
is studied in [1]. A variational approach with the conservative finite difference
scheme for the similarity solution was presented in [15, 16]. In the case of charge
flux arising only from diffusion, the model reduces to initial-boundary value pro-
blem for parabolic equation. The analytical formula for classical Gottrellian Zg,
corresponding to pure diffusive model has also been obtained in [1]. Extending
this approach for the diffusion-convection model the explicit analytical formula
for the current response Z. was obtained in [17]. Obtained relationship between
the current response Z. and the classical Gottrellian Zg shows the degree of
influence of the convection factor to the current response Z..

The present work is aimed to analyze the nonlinear model (1) by taking
into account the migration component, assuming that the nonlinear term /(u),
of the parabolic equation has the form /(u), := u/z,. Physically this linearization
is possible when z,D, = zoDy, where z,, zo are the valences, and D,, Dy are
the diffusivity of the reduced and oxidizes species. Although the second assump-
tion makes some restrictions, it permits to analyze the nonlinear model (1) for
some real class of materials. In particular, we reduce the nonlocal identification
problem (1) to the nonlinear parabolic problem, and construct an iteration algo-
rithm for the numerical solution. Note that the mathematical and numerical ana-
lysis of the considered problem were given only for similarity solution (see, [1, 15,
16)).

In the next section the derive some important aspects of the physico-
chemical and mathematical models derived in [1]. An analysis of the identifica-
tion problem is given section 3. The finite-difference approximation and iteration
algorithms for obtained nonlinear discrete problem is derived in section 4. In the
final section 5 the results of numerical experiments and their interpretations are
presented.
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Table 1
The values of valences and the diffusivity ratio.
20 -1 -2 -3 2 3
Zr -2 -3 —4 1 2
k := D,/Dy 1/2 2/3 3/4 2 32

2. The mathematical model of nonlinear ion transport problem

To briefly discuss here the scaled mathematical model given by (1). The
functions g(u) and h(u) express an influence of the diffusion and migration in
the ion transport and have the forms:

20 + (zr — 20)u ku
h(u) = .
z0 + (z.k — zo)u

gl 20 + (zrk — zo)u’
The valences z,, zp are assumed to have the same sign and their admissi-
ble values are given in table 1. The dimensionless parameter k := D,/Dy is the
diffusivity ratio.
In the view of the dimensionless parameters, the function ¢(z) > 0, Vt > 0,
on the left hand side of the nonlocal condition (1), is defined via the total charge

t
o) =/ IZ(t)dr, t>0, ()
0
carried out by ions of reduced species, as follows:

q(1)

— Z}’
"~ nS,F§C*

Here 7 is the current responce, n is the number of electrons gained by an ion
upon reduction, F is Faraday’s constant, S, is the surface of the electrode and
the constant C* > 0 is the bulk concentration of exchange sites. According to the
nonlocal condition (1), the total charge is proportional to the amount of reduced
species produced during the experiment. Since the concentration u(x,t) of the
reduced species is initially zero, we have ¢(0) = 0.

Let us summarize some properties of the functions g(u) and h(u). Since

_ zozr(—K)

[z0 + (zrk — zo)ul?
and g(0) = 1, g(1) = 1k, we conclude that g(u) is a monotonically increasing
function of u, if 0 < k < 1, and g(u) is a monotonically decreasing function, if

k > 1. In the first case max g(u) = l/k, and in the second case max g(u) = 1.
Further,

o), t=0.

g (u)

kzo
[z0 + (zrk — zo)u]?

h(u) =
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and 2(0) =0, k(1) = 1/z,. Hence h(u) is a monotonically increasing function of
u, if zg > 0, and h(u) is a monotonically decreasing function, if zg < 0. Note that
the valences z,, zo are assumed to be integers of the same sign, and z, # —1,
zo # 1, since one electron must be gained in reduction. In practice, —4 < z, <
zo < —land 1 <z <zp <3 (table 1).

We assume that z,D, = zgDy. This, with the definition of the diffusivity
ratio k := D,/Dy, means that z,k — zyp = 0. Then the above functions g(u) and
h(u) have the form

guw) =1+ (Z—r — 1) u, h@):= lu.
20 Zr

It is shown in [1] that for fixed ¢ € (0, co) the function u(x, #) (scaled con-
centration) and its partial derivative u, (x, t) decreases rapidly to 0 as x — oo.
Moreover, this function assumes the values in [0, 1], i.e., 0 < u(x, ) < 1.

Taking into account these properties of the solution, and the form of the
function g(u) with its values between 1 and Ik, we will replace the coefficient
g(u) in the parabolic equation (1) by the coefficient D := D(x,t), and consider
the following reduced model in the bounded domain Q7 := (0,1) x (0, T).

In the view of the above assumptions the nonlinear problem (1) has the fol-
lowing form:

= (D(x, D)y + ¢ Our, (1) € Qr = (0,1) x (0, T1,
u(x,0=0, xe(,ID, 3)
u@©,t) =1, u,(,t)=0, te(0,T],

q(t) = [yu(x,ndx, 1€[0,T].

3.  Some properties of the solution

Let us use the nonlocal condition to transform the considered problem (3).
We have

1
¢0 = [ . ndr
0
Substituting this in the parabolic equation we have
1 1 1
(0= [ D)+ =0 [

Since [ > 0 is large enough, due to rapid decay u(x,t) and wu,(x,t) as x — 00
we get (u(l, 1) =ux(l,t) =0)

1
q'(t) = —D(0, uy(0,1) — Z—q’(t)u(O, r).
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Hence
feeyy &
q' (1) = I +zrD(O’ Nux (0, 1) 4)
and
Zr !
q(t) =— 1o /0 D(0, T)u, (0, t)dz. %)

Denoting by A = z,/(nS, F6C*) > 0 and using (2) we can express the current
response Z(t) via the flux:

&
Al +z,)

Let us use now (4) to transform the considered problem (3). We have

()= D0, t)ux(0, 1). (6)

wr = (D(x, Dity)x — 13- DO, Due (0, Duy,  (x,1) € Qr == (0,1) x (0, T,
u(x,0) =0, xe(0,10), ()

u@©O,) =1, uy(l,t)=0, re(0,T].

The nonlinear initial-boundary value problem (7) is the reduced form of
the considered identification problem (3), without the nonlocal condition (1).
This problem, is most convenient for numerical implementation, as we will show
below.

Let us denote by v(t) = ¢(¢)/z» and assume for the first time that v(z) is
the given function. Then we have the following initial value problem

Uy = (D(x, Huy)y +v(uy,, (x,t) e Qr:=(0,1)x (0, T],
u(x,0 =0, xe(0,0), (®)
u@©,) =1, uy(l,t)=0, te(,T].

As shows table 1 and formula (4), v(t) > 0 if z, > 0, and v(r) < O if
zr < 0. Hence the sign of the convection term v(¢)u, in the parabolic equation
(8) depends on the sign of the valence z,. We are going to prove that the sign of
the flux ®(x,r) = —D(x, t)u,(x,t) at any point x € (0,/) is determined by the
sign of the flux ®(0,¢) = —D(0, r)u,(0, ¢t) at the initial point x = 0.

Lemma 1. Let u(x,7) € C%(2) N C(Q) be the solution of the parabolic pro-
blem (2). If ®(0,1) = —D(0,Hu,(0,71) > 0, Vi € (0,T], then ®(x,t) =
—D(x, Huy(x,t) = 0 for all x € (0,1).

Proof.  Let ¢(x,t) € C8°(R2) be an arbitrary smooth function with compact
support D, in Q7 Then we obtain the following integral identity:

/ [y — (Duy)y — V(t)ux](pdedt-
Qr
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Integrating by parts we get

/(mpx)i gdx—// u@pyxdxdr — / (Duxgox) dt+// Duypydxdt
Qr
—// v(Huyprdxdr = 0.
Qr

Applying again integration by parts to the second integral we have

1 T T
/(mpx)ﬁjonx _/ (”‘/’Z)izodf‘f‘// uxprdxdt —/ (Duxpy) =hdt
0 0 Qr 0
+// Duxfpxxdxdt—// v(Huxprdxds = 0.
Qr Qr

Hence
T T
//Q [@r + D(x, )pxx — v(t)@xJuydxdt =/0 (Wpt)ﬁj)dt—i-/o (D(x, t)ux(px)iif)dl
T

[
_ /0 (o) =T dx. )

We require that the function ¢(x, ¢) is chosen to be the solution of the fol-
lowing backward parabolic problem:

(pt + D(-x’ t)(pxx - V(t)(Px = F(-x’ t)’ ()C, t) S QT = (05 l) X (0’ T]a
ex,T)y=0, xe(,D), (10)
00,)=¢l,t) =0, te(0,T],

where F(x,t) is an arbitrary function and will be defined below. Evidently
the backward problem (10) is well-defined due to the given finel condition
ox,T)=0.

Let us calculate the right hand side terms of (10). Due to the boundary
condition ¢(0,7) = 0, ¢ € (0,T] we have ¢,(0,r) = 0 Taking into account the
initial and boundary condition in (8) and (10) the integral identity (9) becomes
to the following identity:

T
// F(x, tHu,dxdr = —/ (D0, t)ux (0, ), (0, r))dr. (11)
Qr 0

According to maximum principle for parabolic equations, if F(x,7) > 0 then
o(x,1) <0,Y(x,1) € Qr. Hence

QD(X, t) - (/’(0» t) < O

x—0 X
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Using this inequality with the assumption —D(0, t)u, (0, ¢) > 0 of the lemma in
(11) we get

// F(x,t)uydxdt <0, VF(x,t) > 0.
Qr
Hence u,(x,1) <0, V(x,t) € Qr. This implies the proof.

The Lemma | has a precise physical meaning and asserts that if the flux
®(x, 1) := —D(x, t)uy(x, t) is positive at the initial point x = 0, then it is non-
negative at any point x € (0, ]).

The discrete problem and verification of the iteration algorithm
on the analytical solution

Consider the nonlinear problem (7). Let us define the uniform meshes

wyp = x; € (0,[]:x; =ih; h=IlN, w, = t; €(0,T]:t; = jr; T=T/M. By
using the standard finite difference approximation [18]

Wit),) = Ui Wij+l —Uij .
SR YA : ”—'/,ui,]:=u(x,',tj),t:1,N,]=1,M

Ux,ij = s Urij <=
J h J

T

of the partial derivatives du/dx, du/ot, first approximate the problem on the pie-
cewise uniform mesh wy; := wy x w; as follows:

wijri—wij 1 ,
— -7 [Dz+1/2,/

Wit], j+1—Ui j+1
h

Ui 1 —Ui 1
_Difl/z,j i,j+1 ht L]‘Fl]

1 R el W I VY e S et W e ) R
+1+Zr DI/Z’J - O’

7 h i=1,N—-1, j=2,

j=2,M.

_ UN,j+1"UN-1,j+1
|y j =1, LHEINELIE —

This scheme assumes that the flux —D(0, )u, (0, 7) in the nonlinear term is
linearized by taking its value from previous time layer j.
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In addition to the discrete model (12) we will use also the following itera-
tion scheme:
[ ) () () () ()
Uijr1THij 1 D, i D. T
= T R|MHRiT =20

(n—1) _u(nfl) u(n)

(n)
1 Mo T e i T i . T T v
J +1+ZrD1/Z’J 7 7 —O, l—l,N—l, ]—2,M, (13)

A ul,j _ 1’ uN,j+l_],’:N71,j+l — O, ] — 2’ M.

In this nonlinear scheme the parameter n = 1,2, 3, ... shows the number
of iterations. This scheme assumes that the flux —D(0, #)u, (0, t) in the nonlinear
term is linearized by taking its value from previous iteration.

5.  Numerical experiments

In this section we discuss results of computational experiments related to
the numerical solution of the nonlinear problem (1) by using schemes (12), (13).
In the first series of the computational experiments, the convergence and accu-
racy of the numerical solution of the problem (1) are analyzed. For this aim we
consider the analytical solution

u(x, 1) = exp(—x/A/t), x€[0,10], re(0,1]

of problem (1), with g(u) =1, h(u)=1-2gw)+ 2gu) — 1 —Inu)u.
For the above given function u(x, t) we can calculate ¢(z), by the following
formula:

q@) = /OO u(x, t)dx. (14)
0

Then we have ¢(1) = +/t, and ¢'(t) = 1/2/1).

Therefore ¢’(t) ~ 1//t, which means that ¢’(¢) is proportional to the clas-
sical Gottrelian Zg [1, 179.

Denote by u;, and u h") be the numerical solutions of the nonlinear problem
(1), obtained by schemes (12) and (13), respectively. The computational experi-
ments performed on the mesh 40 x 40, for the above test example show that the
absolute sup-norm errors &y := ||u — uj, || 0o, 8}(:1) = |lu— ”;,”)”oo of concentrations
are 2.9 x 1072 and 2.7 x 1072, respectively.

The values of the exact (analytical) charge, given by the function ¢(¢) = /1,
and the values this function, calculated by applying the numerical integration
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Figure 1. The function g(t) = ./t (solid line) and the found from formula (14) (by numerical

integration formula function) g (¢) (the broken line).

formula (Trapezoidal rule) to (14), are plotted in figure 1. The maximum rela-
tive error, calculated by the formula

_ max; lg(®) — qn ()]
1 max; |q(t)]

x 100% (15)

is obtained &, = 3.9%. This shows high accuracy of the presented schemes (12)
and (13).

In the second series of the computational experiments, we consider the non-
linear problem (7). As it was shown above, this problem is the reduced (transfor-
med) form of the identification problem (1). The numerical solutions obtained by
schemes (12) and (13) for the given data D(x,t) = 1 and z, = 1 are plotted in
figure 2(a) and (b), respectively. The solid lines on the left surfaces in the both
figures show decay of the solution u(x, r) with respect to the variable x > 0.

The cross-sections at the times r = 0.5; 0.9 of these solutions are plotted in
figure 3. As show the figures, the numerical solutions of the nonlinear problem
(7), obtained by the schemes (12) and (13), are almost identical.

To study the dependence of the monotonicity the solution u(x,?) on the
values z, of the valences we consider the same problem with the given data
D(x,t) =1 and z, = —2. The results are plotted in figure 4(a) and (b). Compa-
rising figures 2 and 4 we observe that the rate of the decay of the solution u(x, 1)
with respect to the variable x > 0 increases by increasing the value of the valence
z, of the reduced species.

The next series of the computational experiments are related to the values
of the total charge Q(¢), defined by (2). To compare the original model (1) with
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(@) ' (b)

Figure 2. (a) Numerical solutions of problem (7) by schemes (12) (left figure) and (13) (right figure)
[D(x,t) =1, z =1].
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Figure 3. Cross-sections of the numerical solutions from figure 2(a) and (b) at the times t = 0.5; 0.9
(the results obtained by schemes (12) and (13) are plotted by the lines — and *, respectively.

the reduced (transformed) model (7), the dimensionless total charge ¢ (z) was cal-
culated by the both formulas (14) and (5). The numerical results for the values
zr = 1 and z, = —2 of valences are resented in figure 5. The absolute sup-norm
errors 8, = |lgn —qnlloo Were obtained 8, = 3.0% and §, = 2.7%. Here the values
of the dimensionless total charge ¢(z), calculated by the formulas (14) and (5),
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Figure 4. (a) Numerical solutions of problem (7) by schemes (12) (left figure) and (13) (right figure)
(D(x,t) =1, z, = =2).
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Figure 5. The values of the dimensionless total charge ¢(¢) calculated by (14) (solid line) and by (5)
(the broken line): z = 1 (left figure) and z, = —2 (right figure).

are denoted by ¢gj (solid lines in figure 5) and g, (broken lines in figure 5), cor-
respondingly.

These results show that the initial model (1) can successfully be replaced by
the reduced (transformed) model (7), which easy for computational experiments.
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